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Abstract. The ability of an autonomous agent to self-localise within its
environment is critically dependent on its ability to make accurate obser-
vations of static, salient features. This notion has driven considerable re-
search into the development and improvement of feature extraction and
object recognition algorithms, both within RoboCup and the robotics
community at large. Instead, this paper focuses on the rarely-considered
issue imposed by the limited field of view of humanoid robots; namely, de-
termining an optimal policy for actuating a robot’s head, to ensure it ob-
serves regions of the environment that will maximise the positional infor-
mation provided. The complexity of this task is magnified by a number of
common computational issues; specifically high dimensional state spaces
and noisy environmental observations. This paper details the application
of motivated reinforcement learning to partially overcome these issues,
leading to an 11% improvement (relative to the null case of uniformly
distributed actuation policies) in self-localisation and ball-localisation for
an agent trained online for less than one hour. The method is demon-
strated as a viable method for improving self-localisation in robotics,
without the need for further optimisation of object recognition or tuning
of probabilistic filters.

Keywords: motivated reinforcement learning, localisation, Fourier basis, head
actuation, simulated curiosity

1 Introduction

Effective localisation is essential to solving tasks such as the Robocup soccer
competition. The behaviour of a robot is a function strongly dependent on the
robot’s localisation model. Inaccurate localisation leads to ineffective behaviour
and poor performance. In a game of humanoid robot soccer, successful local-
isation of the robot and field objects relies on the vision system to measure
relative field object locations. Moreover, the behaviour of the head determines
the efficacy of the vision system; limited field of view implies that all field objects
cannot be measured at once. The head actuation problem involves choosing neck
motor positions to optimise localisation. If the robot is completely unlocalised,



panning the head can be used to localise at least partially. The problem of in-
terest involves achieving and maintaining a high level of localisation assuming
that initially the robot is partially localised. Since there are a finite number of
useful field objects, this problem can be abstracted, with inverse kinematics, to
that of sequentially choosing field objects on which to focus gaze to minimise
localisation uncertainty while playing soccer.

Wong, et al. [1], used humanoid robots to model human gaze behaviour in ur-
ban environments. They utilised a gaze direction model based on visually salient
objects placed in a model urban environment. If a robot saw a salient object
it would slow down to view it for a period of time before scanning for other
objects as it continued to walk. This behaviour was then used to benchmark
the performance of gaze vector computer vision techniques; that is, measur-
ing where the robot is looking with a wide field of view camera. We postulate
that this anthropomorphic behaviour is desirable in making head actuation de-
cisions to localise humanoid robots effectively. Therefore, we utilised motivated
reinforcement learning techniques [2] to implement ‘curious’, anthropomorphic
behaviours with the goal of optimising localisation in the RoboCup KidSize soc-
cer league [3].

There are two types of field objects important to localisation of a humanoid
robot while playing soccer: landmarks and objects. Landmarks are used to lo-
calise the robot while objects must be localised in the world model by measuring
position relative to a localised robot, and then transforming the information into
global coordinates [4]. In our approach, the model of the soccer field world is
a collection of Unscented Kalman Filters [5]; each robot maintains a filter for
its own position and a filter for the ball’s position. Each filter is a Gaussian
probability distribution for the possible field locations of an object. This prob-
abilistic model allows uncertainty to be managed quantitatively for each robot
and object, and this allows the robot to assess its localisation performance with-
out external reference.

The head actuation problem was phrased as a Markov decision process and
solved using Q-learning [6] with a motivated agent. A motivated agent uses the
concept of novelty to seek out events which are similar-yet-different to previous
experiences; this curious behaviour was useful in partitioning head actuation
decisions between measuring landmarks and objects.

2 Motivated Reinforcement Learning

Reinforcement learning is a form of machine learning used to solve problems
involving a series of decisions made by an agent based on perceptions of its
environment, with a metric indicating performance after every decision [7]. This
type of problem is called a Markov decision process, and is described fully by:
a state space S; a set of actions A and a function Λ : S → 2A where Λ(s) is
the subset of actions available in state s ∈ S; a transition function T : S × A×
S → [0, 1] describing the probability of state transitions; and a reward function
R : S × A → R [6]. Here 2A = {U : U ⊆ A} is the power set of A, or the set of



all subsets of A. We additionally simplify the problem for the purpose of head
actuation by including the assumption that Λ(s) is finite and discrete for each
s ∈ S. Q-learning is a method of learning the optimal value function Q∗ and can
be performed as an online learning method; that is, the model of Q∗ is updated
between actions to reflect experiences. Actions are chosen from successive states
to affect the environment and thus explore the state action space S × A. After
each action, a function Q : S ×A→ R is updated to approximate Q∗ using the
rule

Q(s, a)← Q(s, a) + α[R(s, a)−Q(s, a) + γ max
a′∈Λ(s′)

Q(s′, a′)]

where s′ is sampled according to the transition function T , and α and γ are
constants known as the learning rate and the discount factor. It has been shown
that this method converges to the optimal value function Q∗ provided the agent
explores all states and each action from each state sufficiently [6]. A further
assumption for convergence is that the process is Markov. A process satisfies
the Markov property if the reward and transition functions depend only on the
current state, and not the history of the system. The state space in the head
actuation problem was constructed with with the aim of satisfying this prop-
erty (Sec. 4). Once Q∗ is known, the agent can make optimal decisions given
each state s in an effort to maximise long term reward by choosing a to max-
imise Q(s, a).

Motivation theory attempts to describe the behaviour of biological intelligent
agents by giving motivational reasons for behaviour. This includes describing the
behaviour of agents removed from stimuli. When reward is a constant function
in some region of the state action space, the choice of actions becomes ambigu-
ous as the environment no longer discriminates. Typically, an animal given no
environmental stimuli will seek out novel experiences, rather than taking no
action [8]. Reinforcement learning infrastructure has been used to model moti-
vated behaviour for application in generating complex, exploratory behaviours in
unsupervised intelligent agents for non-player characters in online multi-player
games [2]. Such motivated reinforcement learning agents differ from standard
agents in that they generate their own reward, independent of the environmen-
tal reward, based on state perceptions and their own actions. It has been es-
tablished that natural agents will seek out a middle ground in terms of novelty
of sensation, resulting in an aversion to experiences too familiar or too unfa-
miliar. Saunders and Gero [9] implemented motivated reinforcement learning
agents to study the progression of architectural designs, with successive designs
similar-yet-different to previous designs. Merrick, et al. [10], have used motivated
reinforcement learning agents to create game content procedurally, conforming
to the similar-but-different concept of motivation, to simulate creativity. Further
research by Merrick [11] involves agents which generate goals based on motiva-
tion. The agent then seeks to learn these goals with standard reinforcement
learning techniques.

Given the novelty N = N(s, a) of a state action pair, the Wundt curve is
used to model the motivation reward function M : S ×A→ R



M(s, a) = M0 +
M1

(1 + e−ρ1(N−N1))
− M2

(1 + e−ρ2(N−N2))

where ρ1, ρ2, N1, N2,M0,M1 and M2 are real parameters which define the func-
tion’s behaviour; Fig.1 illustrates the Wundt curve utilised in solving the head
actuation problem. The novelty N(s, a) can be calculated using methods such
as a Habituated Self-Organising Map [9]. In contrast, the novelty detection
method utilised for the head actuation agents involved maintaining a model
T ′ : S × A→ S of the expected transition function E{T} : S × A→ S. T ′(s, a)
modeled the most likely next state after taking action a from state s. After each
action a from state s, the expected next state, T ′(s, a), is compared to the actual
next state, s′, using the Euclidean norm on S ⊆ Rm. That is, the novelty is given
by

N(s, a) = ‖T ′(s, a)− s′‖2 (1)

After each novelty calculation, the function T ′ was updated to agree more closely
with E{T}(s, a) = s′, simulating habituation, with novelty declining over mul-
tiple similar experiences. This method measures the agent’s ability to predict
environmental reaction and ascribes high prediction accuracy with low novelty
values. The magnitude of the novelty depends on numerous unpredictable fac-
tors, and so the motivation function required extensive tuning to achieve desir-
able behaviour (see Sec. 5 for more detail).

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Novelty N(s,a)

M
ot

iv
at

io
n 

R
ew

ar
d

Fig. 1. The Wundt function [8] used for calculating the motivation reward M(s, a)
is visualised. A reinforcement learning agent interprets motivation as reward and this
drives exploration of the state action space.



3 Approximating Continuous Value Functions

A method for storing a continuous value function, Q, in reinforcement learning
involves a weighted sum of basis functions and learning of a set of scalar weights
using gradient descent. Based on the Fourier series expansion of periodic func-
tions, a Fourier basis can be used to approximate the value functions in a given
domain [12]. The Fourier basis linear approximator is given by the cosine part of
a truncated Fourier series and is updated with a sampled point, gradient descent
update rule. By using only the cosine terms of the series, the number of required
terms for a given accuracy is halved. This comes at the cost of the approxima-
tor being even; we overcome this limitation by restricting the state space to a
non-periodic domain of the function, namely S = [0, τ ]m for some τ > 0. In
the domain [0, τ ]m the function is neither periodic nor even, and thus arbitrary
continuous functions f : [0, τ ]m → R can be approximated. The performance of
the Fourier basis linear approximator at value function approximation has been
shown to compete with other leading methods such as radial basis estimation
and popular learned basis approximation architectures [12]. For an approximator
F : [0, τ ]m → R of order k ∈ N, the value of the approximation at x ∈ [0, τ ]m is
given by

F (x) = 〈w,
−→
φ (x)〉 =

∑
c∈C

wc cos
[π
τ
〈c,x〉

]
where C is a subset of (Zk+1)m. We say φc(x) = cos(πτ 〈c,x〉) is the basis func-
tion corresponding to c ∈ C and wc ∈ R is the weight of the basis function
corresponding to c ∈ C. Zj denotes the set of integers modulo j, thus C is a

collection of m−dimensional vectors of integers less than or equal to k.
−→
φ (x) is

the vector of basis functions. If f : Rm → R is to be approximated by F with the
form above, then sampling f at x ∈ Rm allows F to be updated according to a
gradient descent update rule to shift the value of F (x) to agree more closely with
f(x). To approximate a function g : Rm → Rn, n Fourier basis approximators
are used, one for each component of the output.

4 Experiment and Results

The head actuation problem required a solution which accounted for the sub-
tleties involved with maintaining field models with high levels of noise in mea-
surements. This involves making appropriate decisions based on what is most
likely to be seen given the estimated locations of objects, which objects give the
most information and several other factors. Thus, the problem of choosing head
actuation decisions was framed as a Markov decision process and solved with
online reinforcement learning methods.

The Markov decision process was constructed by sampling data from the
robot infrastructure. The states were constructed as vectors of useful data. Each
entry in the state vector was scaled using sigmoid (f(x) = 1

1+e−a(x−b)
) or de-

caying growth (f(x) = 1− e−ax) functions to confine the ranges within [0, τ ] to



ensure convergence of the Fourier basis approximator which was used to store
the value function Q. The action space was the collection of landmarks and ob-
jects which were on the field; namely the four goal posts and the ball. For a given
action, the robot scans the region in which the object is likely to be found, given
by the Kalman filter, for a set period of time, or until it finds the object. An un-
localised robot would thus scan its full field of view, giving a good initial level of
localisation. The state space had 10 dimensions and the action space contained
5 actions. The state variables were selected to be approximately independent for
inclusion in an uncoupled Fourier basis linear approximator. The state variables
were chosen to be the distances to each goal, the total uncertainty in the robot’s
location filter, the distance to the ball from the robot, the total uncertainty in
the ball’s location filter, and five object priorities corresponding to the action
space. The priority of an object is given by the time since the object was last
seen, t, and the head movement cost to look at the object, measured in radians,
c. If c 6= 0 then the priority is given by

τ(1− e−cp tc )

where cp is a constant which accounts for the different units and ranges of t
and c. If c = 0 then the priority is zero, corresponding to when the object is
in the field of view of the robot. Objects which have not been seen for longer
times or which require little movement to view have a high priority. Thus it
can be predicted that high priority objects should be chosen more frequently.
This combination of two state variables with complementary expected optimal
policies minimises the dimensionality of the state space and reduces computation
times. Distances were calculated based on data stored on the robot or measured
by the robot. Measured location was used when the object was in the field of
view of the robot, and filtered location was used otherwise. The robot’s (x, y)
location was not included in the state variables because sufficient information
is encoded in the distance to the goals. Two reflectively symmetric possibilities
exist for a given pair of goal distances. This information is sufficient for head
movement decisions as the best action will not depend on which wing of the field
the robot is positioned.

The action function Λ(s) was defined as the set of objects the robot could
look at in state s without exceeding the restrictions on head rotation imposed by
the KidSize League RoboCup rules (−135o ≤ θ ≤ 135o, −90o ≤ ϕ ≤ 90o; where
θ and ϕ are the angles measured from forward facing direction in the horizontal
and vertical planes respectively [13]). The environmental reward function was
constructed as a decreasing function of total localisation variance of the robot
model and field objects model. The reward was calculated according to

R(s, a) =
1

2
[e−cb(σ

2
bx+σ

2
by) + e−cr(σ

2
rx+σ

2
ry)−cφ(σ

2
rφ)] (2)

where σ2
bζ and σ2

rζ are the variances in the variable ζ in the next state s′ for the
ball and the robot respectively. The variable φ denotes the robot’s heading on the
field and the terms of the form cζ are constants which were adjusted to weight



each variance equally, accounting for differing units and ranges. The reward is
normalised to the interval [0, 1], with perfect localisation indicated by R = 1.
The reward function is a function of data also directly included in the state
vector, namely the total ball error, cb(σ

2
bx + σ2

by), and the total self localisation

error, cr(σ
2
rx + σ2

ry) + cφ(σ2
rφ). Thus, the reward depended on the current state

only and did not compromise the Markov property. All data was sourced from
the world model of the robot, or from the robot’s measurements. Data could
have been generated by overhead cameras and other external sensors, particu-
larly the absolute localisation error. However, by restricting data to that stored
and computed on the robot, the process could be solved online, even during a
RoboCup match. Online learning is necessary for the motivated reinforcement
learning agent, as the behaviour relies on the changing novelty and thus chang-
ing reward function. Standard reinforcement learning agents should also benefit
from the adaptability of online learning. Additionally, by using the localisation
uncertainty for the reward, and not the absolute error, the performance of the
agents can be measured with noise from other systems, like vision, excluded.

Three agents used Q-learning to solve the Markov decision process with re-
ward functions differing between agents. Training sessions were performed with
off-policy (RL Agent) or on-policy (others) action selection. During games all
agents operate by making decisions on-policy and learning simultaneously. One
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Fig. 2. Results of on-policy, kidnapped robot testing of the head actuation agents. The
performance of each agent was assessed by placing the robot in fifteen field positions
and allowing the head actuation agent to make twenty decisions while learning. The
localisation reward, R(s, a), was recorded after each action was taken and averaged
over the 15 positions to provide a metric of performance over the whole field. A local-
isation reward of 1 corresponds to complete certainty in localisation and the relative
localisation uncertainty is given by simply inverting this graph.



agent was trained to maximise the reward given by the environment, R(s,a);
this agent will be denoted the RL Agent. The second agent was trained to ig-
nore the reward given by the environment and instead use a motivation reward,
M(s,a); this agent will be denoted the Motivated Agent. A third agent, the Com-
bined Agent, used a sum of the environmental and the motivation reward, biased
additively by -0.5 (Table 1). The Wundt parameters used for motivation were
N1 = 50, N2 = 200,M0 = −1,M1 = 1.5,M2 = 0.5 and ρ1 = ρ2 = 0.1 (Fig. 1).
These parameters were chosen to suit the range of the novelty by experimental
tuning, and are specific to the novelty calculation method and desired behaviour.
It was found that, for the purpose of the head actuation, it was more effective
to penalise highly novel states minimally, hence the parameters chosen. This
choice of parameters gave a motivation reward function M(s, a) ranging from -1
to 0.5 (Fig. 1). The combination of environmental and motivation rewards for
the Combined Agent was selected by tuning to balance the importance of explo-
ration and exploitation. The agents utilised Fourier basis linear approximators
of order k = 30 with gradient descent update rule to store and learn the value
function Q and the expected transition function T ′. The set C ⊆ (Zk+1)m for
the approximators was chosen to be C = {c ∈ (Zk+1)m : ci 6= 0 for at most one
i ∈ N s.t. 1 ≤ i ≤ m}. This is called a decoupled Fourier basis, as only single vari-
able cosines form the basis functions. The state variables were chosen carefully
because of this; variables which may have been correlated were re-formulated to
be independent variables where possible. For example, the robot’s position was
not included in the state variables, as the goal distances and position would not
be independent.

Table 1. The reward schemes for learning agents are summarised.

Agent Reward

RL Agent R(s, a)
Motivated Agent M(s, a)
Combined Agent R(s, a) + M(s, a)− 0.5

The agents were trained for approximately 30 minutes each. Fifteen minutes
while playing soccer and fifteen minutes of fixed position training. Fixed position
training involves placing the robot on the field in a series of positions and allow-
ing the agent to make decisions and learn while the robot remains stationary.
Fixed position training was used to guide the robot to explore states that rarely
occur during soccer playing but which are still important. During training, off-
policy soft-max action selection was used to train the RL Agent, whereas the
motivated agents made all decisions on-policy. Off-policy training was required
only for the RL Agent as the others had inbuilt explorative tendencies in the
form of motivation reward. Another technique for off-policy training, ε-greedy,
was also tested, but found to produce no better results. The purpose of this
training was to provide the agents with a base value function and policy upon



which they can build during game play by learning online.
Obtaining quantitative results from a soccer playing robot proved too diffi-

cult due to the stochastic elements introduced by the interaction of several other
robot systems, so the agents were assessed by measuring on-policy performance
during fixed position, kidnapped robot localisation problems [14]. That is, each
agent was moved to a random location on the field and was allowed to localise
by making twenty head movement decisions, on-policy, while learning. This sim-
ulates the scenario where the robot loses localisation, perhaps due to falling
down, and must re-localise before re-engaging with the game. This was done
for 15 positions for each agent and the reward after a given number of actions
was averaged over the 15 positions. The environmental reward for each action
was used to measure performance as it directly indicates the relative localisation
accuracy of the robot (Equation 2). A third agent was used as a control: the
Uniform Agent. The Uniform Agent simply chose head movement with uniform
probability from the available objects, as indicated by Λ. The Uniform Agent
performed well and, as it was simple to implement, the Uniform Agent became
the baseline to which the other agents were compared.

The results of the experiment are shown in Fig. 2 and Table 2. The mean
environmental localisation reward over the 15 field positions was used as a met-
ric for agent performance after each action. The environmental reward after a
given number of actions varied on average 23% from the displayed mean value.
Although this seems large, it must be recognised that between different field
locations, during kidnapped robot testing, the bounds on the localisation uncer-
tainty vary due to the differing amounts of information available. For example,
the magnitudes of σ2

bx and σ2
by will be bounded below by some value determined

by the distance from the ball to the robot and by the parameters involved with
the Kalman filter. Therefore a spread of values for the localisation uncertainty
is expected. Learning was fast enough to be performed online without affecting
the other robot systems. However, this result was sensitive with respect to the
size of the Fourier linear approximators. This is why a decoupled approximator
was a necessity.

5 Discussion

The Uniform Agent performed better than previous methods, such as the simple
hard coded logic statement method which was used in previous competitions,
with a steady increase in mean reward over the twenty actions after the initial
localisation. The Uniform Agent performed well because it was obtaining infor-
mation regardless of its choices. The RL Agent generally performed better than
the Uniform Agent at playing soccer. It was able to balance looking at the goals
and the ball in most situations, and this enabled goal scoring to increase and
defending to be more effective. Moreover, the Combined Agent performed better
than the RL Agent for the first 8 actions due to the interaction of boredom with
the environmental reward. Boredom is the state where, due to low novelty, the
motivation reward is low. By choosing to penalise boredom heavily (Fig. 1) rela-



Table 2. The localisation performance of reinforcement leaning agents during kid-
napped robot testing is summarised (corresponding to Fig. 2). The RL Agent and
Combined Agent outperformed the Uniform Agent both at localising quickly and in
long-term performance. The expression ‘localised over x’ means achieving a localisation
reward greater than x.

Agent Type Uniform Motivated RL Combined

Number of cases(out
of 15) localised over 10 10 13 13
0.8 within 4 actions

Actions to achieve
over 0.8 mean 18 >20 3 3
localisation reward

Average % improvement
over Uniform Agent - -11% 12% 11%
over 20 actions

tive to the environmental reward in the Combined Agent, a curious but focused
head actuation agent was trained. Overall the Combined Agent was able to make
head actuation decisions to localise robustly. The worsening performance of the
Combined Agent for more than 8 actions is likely due to the agent becoming
bored after being in the one field position for extended periods and revisiting
the same subset of the state space. This would cause worse decisions due to the
motivation reward dominating, and this is reflected in the reward curve trend-
ing similarly to the Motivated Agent’s curve after 12 actions. This would not
seriously affect soccer playing as the field location changes quickly during a soc-
cer match, so the robot will likely never make more than a few decisions from
one field position at a time. The motivated agent performed poorly as it could
not distinguish which actions were better and it did not become bored quickly
enough due to the Wundt function. A better agent may have used a hyperac-
tive Wundt function, with high novelty required for positive reward, causing
the agent to choose the next action based on the least frequently chosen action.
However, the Wundt function shown in Fig. 1 was effective for the Combined
Agent, so it was also examined independently.

The Combined Agent is only random in its initial state, before training. After
the first learning iteration, it uses no random variables to make decisions but
rather a complex motivation system that balances exploration and exploitation.
It should be noted that the Combined Agent requires no off-policy action selec-
tion during training as the motivation reward induces a natural exploration. This
exploration may provide a viable alternative to using off-policy action selection
techniques, such as soft-max or ε-greedy, during training. Due to its balanced
exploration, motivation may prove more effective than these techniques; more
research would be required to measure its effectiveness.

As with any machine learning task, finding an acceptable set of training pa-
rameters was difficult. The key parameters for the Fourier basis approximators



was the domain size τ , order k and the basis function set C; k and C must be
chosen to balance computation time and resolution of the function. The dimen-
sionality costs of choosing C = (Zk+1)m were too large for a high dimensional
state space (m=10) as |(Zk+1)m| = (k + 1)m. The use of the uncoupled basis
function set, with size |C| = m(k + 1), allowed for liberal choice for the order k
at the cost of requiring uncoupled state variables. The calculation of the novelty
proved effective for the purposes of motivating the head actuation agents to ex-
plore new actions and states. It was found that the expected transition function
T ′ does not have to approximate E{T} with arbitrary accuracy. However, due
to the way in which the novelty was calculated with a norm on Rm, it was im-
possible to predict the range of values which the novelty would take or where the
Wundt function should be most sensitive. An upper bound for the novelty can
be estimated to be mτ2, based on the Equation 1 and the restriction of the range
of the state vectors to [0, τ ]. However, T ′ is not bounded by these limits and this
value says little about the useful range of novelty once the function approxima-
tor has been trained. For example, this experiment had a state space dimension
of m = 10 and a function approximator range τ = 10 giving a theoretical max-
imum novelty of 1000. However, the most useful set of Wundt parameters only
distinguished between novelties in the range of 50 to 300 (Fig. 1). These Wundt
parameters were obtained by, on the first instance of training an agent on a
given state space, re-adjusting the parameters between training sets. Training
sets involved between 20 and 100 actions with full training involving about 500
actions over about an hour. This training was not automated; specifically the
fixed position training required manual repositioning the robot and ball after
each training set. After one agent was trained, and the Wundt function parame-
ters found, other agents could be trained without adjustment of the parameters
provided the state space and function approximator parameters did not change.

6 Conclusion

A motivated reinforcement learning framework was successfully developed and
implemented for the optimisation of head actuation policies. Self-localisation was
demonstrated as improving by over 11% relative to the null case of uniformly
distributed actuation policies, for agents trained online for no more than one
hour. Within 4 actions, the reinforcement learning agents were able to localise
accurately for 13 out of 15 cases. In contrast, the uniform agent localised accu-
rately in 10 from 15 cases within 4 actions. It was observed that, by exhibiting
some level of artificial ‘boredom’ and ‘curiosity’, the motivated reinforcement
learning agent is able to modestly improve its self-localisation by observing its
environment in a more intelligent manner; a viable method for improving locali-
sation performance without the need for improved object recognition algorithms
or the tuning of probabilistic filters.
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